大家好,我是小夏,我来为大家解答以上问题。解析几何公式大全图解,解析几何公式很多人还不知道,现在让我们一起来看看吧!
1、解析几何中的常用公式及技巧: 1. 直线的倾斜角α的范围是[0,π) 2. 直线的倾斜角与斜率的变化关系:当倾斜角是锐角是,斜率k随着倾斜角α的增大而增大。
2、当α是钝角时,k与α同增减。
3、 3. 截距不是距离,截距相等时不要忘了过原点的特殊情形。
4、 4. 两直线:L1 A1x+B1y+C1=0 L2: A2x+B2y+C2=0 L1⊥L2 A1A2+B1B2=0 5. 两直线的到角公式:L1到L2的角为θ,tanθ= 夹角为θ,tanθ=| | 注意夹角和到角的区别 6. 点到直线的距离公式,两平行直线间距离的求法。
5、 7. 有关对称的一些结论 1.点(a,b)关于x轴、y轴、原点、直线y=x的对称点分别是 (a,-b),(-a,b),(-a,-b),(b,a) 2..点和圆的位置关系的判别转化为点到圆心的距离与半径的大小关系。
6、 点P(x0,y0),圆的方程:(x-a)²+(y-b)²=r². 如果(x0-a)²+(y0-b)²>r² 点P(x0,y0)在圆外; 如果 (x0-a)²+(y0-b)²<r² 点P(x0,y0)在圆内; 如果 (x0-a)²+(y0-b)²=r² 点P(x0,y0)在圆上。
7、 3.圆上一点的切线方程:点P(x0,y0)在圆x²+y²=r²上,那么过点P的切线方程为:x0x+y0y=r² 4.过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与x轴垂直的直线。
8、 5.直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题。
9、d>r 相离 d=r 相切 d<r 相交 6.圆与圆的位置关系,经常转化为两圆的圆心距与两圆的半径之间的关系。
10、设两圆的圆心距为d,两圆的半径分别为r,R d>r+R 两圆相离 d=r+R 两圆相外切 |R-r|<d<r+R 两圆相交 d=|R-r| 两圆相内切 d<|R-r| 两圆内含 d=0,两圆同心。
11、 7.两圆相交弦所在直线方程的求法: 圆C1的方程为:x²+y²+D1x+E1y+C1=0. 圆C2的方程为:x²+y²+D2x+E2y+C2=0. 把两式相减得相交弦所在直线方程为:(D1-D2)x+(E1-E2)y+(C1-C2)=0 8.圆上一定到某点或者某条直线的距离的最大、最小值的求法。
12、 9.焦半径公式:在椭圆 =1中,F1、F2分别左右焦点,P(x0,y0)是椭圆是一点,则:(1)|PF1|=a+ex0 |PF2|=a-ex0 。
本文到此讲解完毕了,希望对大家有帮助。